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Abstract
In this paper, we develop a model for the resonant interaction between a pair of
coupled quantum wires, under conditions where self-consistent effects lead to
the formation of a local magnetic moment in one of the wires. Our analysis is
motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett.
82 3952), who showed that the conductance of one of the quantum wires exhibits
a resonant peak at low temperatures, whenever the other wire is swept into the
regime where local-moment formation is expected. In order to account for these
observations, we develop a theoretical model for the inter-wire interaction that
calculated the transmission properties of one (the fixed) wire when the device
potential is modified by the presence of an extra scattering term,arising from the
presence of the local moment in the swept wire. To determine the transmission
coefficients in this system, we derive equations describing the dynamics of
electrons in the swept and fixed wires of the coupled-wire geometry. Our
analysis clearly shows that the observation of a resonant peak in the conductance
of the fixed wire is correlated to the appearance of additional structure (near
0.75 × 2e2/h or 0.25 × 2e2/h) in the conductance of the swept wire, in
agreement with the experimental results of Morimoto et al.

1. Introduction

More than 15 years since the experimental discovery of conductance quantization (in integer
units of G0 = 2e2/h) in ballistic quantum wires, or quantum point contacts (QPCs) [1, 2] the
nature of transport in these apparently simple structures continues to attract significant interest.
While the integer quantization can be understood within a simple free-electron picture, the
same model is unable to account for the observation of an additional plateau-like feature near
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0.7G0, which has now been reported in a variety of experiments [3–9]. Motivated by the
unusual characteristics of this ‘0.7 feature’, such as its response to an in-plane magnetic field
and its temperature dependence, there is an emerging theoretical consensus that it is somehow
related to a lifting of spin degeneracy in the QPC [10–24]. While the exact microscopic origins
of this effect remain the topic of debate, the lifting of spin degeneracy is somehow thought to be
related to a strong enhancement of many-body interactions,which occurs as the electron density
in the channel is almost fully depleted. The spin-dependent transmission moreover implies the
formation of a local magnetic moment (LMM) in the QPC, and numerical calculations suggest
that the magnitude of this moment is comparable to that of the Bohr magneton [16, 19].
In recent work by our group, we provided evidence for the electrical detection of this local
magnetic moment, by studying the electrical properties of a structure comprised of a pair of
coupled QPCs (shown schematically in figure 1) [25–28]. In this experiment [25–27], we
measured the conductance of the fixed (detector) QPC as we varied the voltage applied to the
gate of the other (swept) QPC (the current flows as shown in the left upper panel of figure 1).
The key result of this study was the observation of a sharp resonance in the conductance of
the fixed QPC, which was correlated to the gate-voltage range where the swept QPC pinched
off (measured in the schematic of the right upper panel of figure 1). Motivated by the results
of this experiment, we developed a model for the inter-QPC interaction in which we assumed
that the observed peak was related to the formation of an LMM in the swept wire, and used a
modified form of the Anderson Hamiltonian to describe this moment and its coupling to the
detector wire. Calculating the correction to the conductance of the detector QPC, resulting
from this coupling, we obtained a resonant peak in its conductance, whose characteristics were
found to be very similar to those of the experiment [28].

While the model developed in [28] allows for a qualitative understanding of the resonant
interaction between the QPCs, there are nonetheless a number of its features that remain
unsatisfactory. These shortcomings stem from the difficulty of adapting the many-body
concepts used to describe the 0.7 feature to the framework of the specific coupled-quantum-
wire geometry responsible for the resonant features seen in experiment. While the role of
the device geometry in transport is well developed for single-particle problems [29], it is very
difficult to incorporate many-body effects within such approaches. The key assumption in [28]
was that a localized electron state is formed in the swept QPC near pinch-off, so that the net
magnetic moment associated with this state is described by the Anderson Hamiltonian. The
coupling between the quantum wires in this case was described in terms of tunnelling matrix
elements, which could be used only as fitting parameters since there is no practical way to
calculate them. The specific form of the resonant response of this system is greatly dependent
on the energy dependence of these matrix elements, which was imposed a priori in [29]. In
order to overcome these difficulties, we have recently developed a different model [30] to
describe the magnetic moment in a quantum wire in single-particle terms. In this model, the
magnetic moment is described semi-phenomenologically as a spin 1/2 located in the quantum
wire. A change in the conductance of the quantum wire then comes about as the result of the
exchange coupling (J (x)) between the LMM and the conducting electrons. This exchange
coupling is assumed to be smoothly varying along the length of the quantum wire (which is
very different from electron scattering from magnetic impurities), and can be either deduced
as a fitting parameter to experimental data, or obtained from density functional simulations.
In this way, we obtained an additional plateau, at 0.75G0, for ferromagnetic coupling (J > 0),
and a plateau at 0.25G0 for antiferromagnetic coupling (J < 0), in agreement with the results
of [11–13], where a similar model was used. In this paper, we adapt this methodology to
study the coupled-QPC device schematically shown in figure 1, and calculate the conductance
of the detector QPC in the presence of an extra scattering term, arising from an LMM in the



Influence of magnetic moment formation on the conductance of coupled quantum wires 5271

Figure 1. Upper panels: schematic illustration of the coupled-QPC geometry studied in [25]. Black
regions denote metallic gates, which are deposited on the surface of a high-mobility GaAs/AlGaAs
quantum well. The separation between the QPCs in the actual device is of order 1 µm. Left panel:
the conductance of the fixed (detector) wire is measured, as the voltage applied to the swept gate
is varied. Right panel: the voltage applied to the swept gate is varied over the same range as in the
case of the left panel, but the probe configuration now allows a measurement of the conductance
path including the swept wire. In this way, the region where the swept wire pinches off can be
identified. Lower panels: left panel, the potential W (y) describing the two quantum wires is shown
in white; right panel, the potential V (x, y) of the tunnelling channel connecting the two wires is
shown in white.

swept wire. The formulation of this idea is given in section 2, where we briefly review the
derivation of the equations describing the dynamics of electrons in the swept wire and obtain
a corresponding equation for the detector QPCs. In section 3, we determine the transmission
coefficient and conductance for the fixed wire and compare these expressions to the results
of [28]. Our main finding is that the experimentally observed peak in the conductance of
the detector QPC is reproduced by this new model, indicating that this feature is indeed a
consequence of LMM formation in the swept QPC, and does not in any way depend on
the particular many-body description of the nature of LMM. More specifically, we obtain a
resonant peak in the conductance of the detector wire that is correlated to the appearance of
additional plateaus (at either 0.75G0 or 0.25G0) in the conductance of the swept wire. The
latter feature was observed in the experimental results of [4] and we show here that it may result
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from an antiferromagnetic coupling between the LMM and the conducting electrons. We also
demonstrate an oscillatory behaviour of the peak height as a function of the conductance of
the fixed wire, consistent with the results of experiment.

2. Theoretical formulation

In this section, we begin from the Schrödinger equation for electrons in the coupled-QPC
device of figure 1, and solve this equation to obtain expressions for the resulting electron
dynamics. We would like to point out that this discussion closely parallels that in [30], where
we adopted a similar formalism to study the influence of LMM formation on the conductance
of single QPCs. In spite of the overlap with this previous work, however, we nonetheless
believe that providing a full derivation of the specific problem under study here will greatly
improve the readability of this report. We start our description of the electron dynamics in the
device of figure 1 by introducing the following, single-particle, Hamiltonian:

Ĥ0 = Kx + Ky + U(x) + W (y) + V (x, y)− J (x, y) �̂σ · �̂S, (1)

where Kx and Ky are the kinetic energy operators for an electron localized in the 2D plane,
W (y) is the double-well potential describing the two quantum wires (white regions in figure 1,
left lower panel), V (x, y) is the potential of the tunnelling channel connecting the two wires
(white regions in figure 1, right lower panel), and U(x) describes the smooth bottleneck
shape of the quantum wire channels. The final term simulates exchange coupling between

the conductance electrons (Pauli matrices �̂σ ) and the local moment, �̂S. The latter is assumed
to be a spin-1/2 magnetic moment and J (x, y) is a coordinate-dependent exchange coupling
constant. U(x), J (x, y), and V (x, y) all vanish as x → ±∞ and the potential V (x, y) is very
sharp in comparison with the variation of U(x) along the x-direction due to the narrowness of
the windows connecting the QPCs and the quantum-dot region. J (x, y) has an x-dependence
similar to that of U(x), since the spatial characteristics of the local magnetic moment formed in
the conducting channel are determined by the shape of this channel. We write the Schrödinger
equation in the form

Ĥ0ψ̂(x, y) = Eψ̂(x, y), (2)

where the symbol ‘hat’ in this and subsequent equations is used to refer to operators and
wavefunctions in the four-dimensional spin space of the two spins. The basis vectors in this
space (the so-called uncoupled representation) are given by [31]

χ̂1 = |↑e〉 |↑S〉 , χ̂2 = |↓e〉 |↓S〉 ,
χ̂3 = |↑e〉 |↓S〉 , and χ̂4 = |↓e〉 |↑S〉 , (3)

where |↑e〉 (|↓e〉) and |↑S〉 (|↓S〉) are spin-up (spin-down) states of the electron spin, �σ , and the
local moment spin, �S, respectively. The canonical transformation to the coupled representation
is discussed in appendix A. The solution of the Schrödinger equation, equation (2), can be
expanded in terms of the spin functions, equation (3), as

ψ̂(x, y) =
4∑

α=1

χ̂αψα(x, y). (4)

Following the procedure of [32] we expand the full wavefunctions in terms of different
propagating modes

ψ̂(x, y) =
∑

n

ϕ̂n(x)�n(y) (5)
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Figure 2. The double-well potential of the two quantum wires and the eigenenergies of this
potential.

with the transverse structure of nth mode given by the solutions of the equation
[
Ky + W (y)

]
�n(y) = En�n(y). (6)

Correspondingly, the wavefunctions ϕ̂n(x) obey the coupled equations

[E − En − Kx − Un(x)] ϕ̂n(x) =
∑

m �=n

(
Vnm(x)− Jnm(x) �̂σ · �̂S

)
ϕ̂m(x) (7)

where

Vnm(x) =
∫

dy�∗
n(y)V (x, y)�m(y), (8)

Jnm(x) =
∫

dy�∗
n(y)J (x, y)�m(y), (9)

and Un(x) = U(x) + Vnn(x).
In the following analysis we make a number of simplifications in equation (7). First, we

note that if the wires are well separated, the wavefunctions�n(y) are strongly localized in one
of the two wires, allowing us to distinguish the modes propagating in each of the wires. We
assume that the shape of the confining potential W (y) is such that one of the wires is close
to pinch-off (i.e. the swept wire) and so has only one propagating mode (described by the
wavefunction ϕ̂0(x)) with its transverse confinement (subband bottom) energy, E0, less than
the Fermi energy. The other (detector) wire, in contrast, is assumed to have several propagating
modes (figure 2). Since the LMM is assumed to only form in the lowest subband of the swept
wire, the exchange coupling can be approximated as Jnm(x) = δn,0δm,0 J (x). Thus the system
of equations is reduced to

[
E − E0 − Kx − U0(x) + J (x) �̂σ · �̂S

]
ϕ̂0(x) =

∑

n�1

V0n(x)ϕ̂n(x) (10)

and

[E − En − Kx − Un(x)] ϕ̂n(x) =
∑

m

Vnm(x)ϕ̂m(x) for n � 1. (11)

Relying on the large energy separation between the subbands, in comparison to the
magnitudes of Vnm(x) and J (x), we also neglect any interaction between the different subbands
of the fixed wire, effectively restricting our analysis to a two-subband model, i.e. studying the
interaction of the lowest subband of the swept wire with the nth subband of the fixed wire.
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The coupled equations for this pair of subbands are
[

E − E0 − Kx − U0(x) + J (x) �̂σ · �̂S
]
ϕ̂0(x) = Vn(x)ϕ̂n(x), (12)

[E − En − Kx − Un(x)] ϕ̂n(x) = Vn(x)ϕ̂0(x), (13)

where we have introduced Vn(x) = V0n(x) = Vn0(x). Equations (12) and (13) can be
decoupled using Green functions:

Ĝ0(ε) =
[
ε − Kx − U0(x) + J (x) �̂σ · �̂S

]−1
(14)

and

Ĝn(ε) = [ε − Kx − Un(x)]−1 . (15)

With these Green functions equations (12) and (13) can be formally integrated as

ϕ̂0(x) = Ĝ0(E − E0)V (x)ϕ̂n(x) (16)

and

ϕ̂n(x) = Ĝn(E − En)V (x)ϕ̂0(x). (17)

Accordingly, we obtain
[

E − E0 − Kx − U0(x) + J (x) �̂σ · �̂S
]
ϕ̂0(x) = V (x)Ĝn(E − En)V (x)ϕ̂0(x), (18)

and

[E − En − Kx − Un(x)] ϕ̂n(x) = V (x)Ĝ0(E − E0)V (x)ϕ̂n(x). (19)

The Green function Ĝn(ε) is a scalar Green function, that is, it is a unit matrix in the
uncoupled spin space, whereas Ĝ0(ε) has a more complicated structure. Nevertheless, it can
be expressed in terms of two scalar Green functions (see the derivation in appendix B) as

Ĝ0(ε) = 1
4

[
3gt(ε) + gs(ε)

]
Î + 1

4

[
gt(ε)− gs(ε)

] �̂σ · �̂S, (20)

where

gt(ε) = [ε − Kx − U(x) + J (x)]−1 (21)

and

gs(ε) = [ε − Kx − U(x)− 3J (x)]−1 . (22)

Now we are able to redefine the scalar potentials, as

Ũ0(x, E) = U0(x) + V (x)Ĝn(E − En)V (x) (23)

and

Ũn(x, E) = Un(x) + vn(x, E) = Un(x) + Vn(x) 1
4

[
3gt(E − E0) + gs(E − E0)

]
Vn(x), (24)

and introduce the tunnelling-induced exchange coupling of electrons in the fixed wire to the
LMM,

jn(x, E) = −Vn(x)
1
4

[
gt(E − E0)− gs(E − E0)

]
Vn(x). (25)

As a result, we obtain the following equations describing electron dynamics in the swept and
fixed wires: [

E − E0 − Kx − Ũ0(x) + J (x) �̂σ · �̂S
]
ϕ̂0(x) = 0, (26)

and [
E − En − Kx − Ũn(x) + j (x, E) �̂σ · �̂S

]
ϕ̂n(x) = 0. (27)
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Although the form of these two equations is very similar, and they can be both treated in
the same manner (as is discussed in the following section), the results they yield will differ,
depending on the specific shapes of the potentials and the spacial dependence of the exchange
couplings. In particular, while the shape of the coupling J (x) in equation (26) is smooth,similar
to that of the potential U(x), the exchange constant j (x) of equation (27) is proportional to
the potential V (x), and is therefore sharper than U(x).

3. Calculations of the transmission coefficient and conductance for the swept and fixed
wires

In our previous paper [30], we determined the transmission coefficient and the conductance of
a single QPC, expanding functions Ũ0(x) and J (x) involved in equation (26) into series near
their maxima (i.e. representing them as inverted parabolas) as

Ũ0(x) = Ũ0(0) +
x2

2

∂2Ũ0(x)

∂x2

∣∣∣∣∣
x=0

= Ũmax − mω2
U x2

2
(28)

and

J (x) = J (0) +
x2

2

∂2 J (x)

∂x2

∣∣∣∣
x=0

= Jmax − mω2
J x2

2
. (29)

The transmission coefficient for the inverse parabolic barrier u(x) = −mω2x2/2 is given
by [33]

t (η) = [1 + e−2πη
]−1/2

, (30)

where η = ε/h̄ω, and the energy, ε, is measured from the top of the barrier. Thus, the
transmission coefficients of the swept wire can be written as

T0t = t

(
ε − Ũmax + Jmax

h̄ω−

)
(31)

and

T0s = t

(
ε − Ũmax − 3Jmax

h̄ω+

)
, (32)

where ω− =
√
ω2

U − ω2
J , ω+ =

√
ω2

U + 3ω2
J . Assuming the equivalence of all initial spin

orientations, we obtain the conductance of the swept wire as

GSW = 2e2

h

[
3

4
|T0t |2 +

1

4
|T0s |2

]

= 2e2

h



3

4

∣∣∣∣∣t
(
ε − Ũmax + Jmax

h̄ω−

)∣∣∣∣∣

2

+
1

4

∣∣∣∣∣t
(
ε − Ũmax − 3Jmax

h̄ω+

)∣∣∣∣∣

2


 . (33)

The most important feature of the transmission coefficients is that the transmission
probability, |t (η)|2, is very close to a step function. This step-like structure causes the
conductance to reproduce the step-like behaviour of the 0.7 anomaly. In the case of
ferromagnetic coupling between the electrons and local magnetic moment, Jmax > 0, our
model gives an additional conductance step at 0.75 × 2e2/h, as

GSW = 2e2

h






0, if ε < Ũmax − Jmax,

0.75, if Ũmax − Jmax < ε < Ũmax + 3Jmax,
1, if ε > Ũmax + 3Jmax.

(34)
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It is interesting to point out that for antiferromagnetic coupling, Jmax < 0, we obtain a
conductance step at 0.25 × 2e2/h, which has been observed in experiments [4] and density-
functional simulations [16], as

GSW = 2e2

h






0, if ε < Ũmax − 3 |Jmax|,
0.25, if Umax − 3 |Jmax| < ε < Ũmax + |Jmax|,
1, if ε > Ũmax + |Jmax|.

(35)

The idea that the 0.7 anomaly is caused by singlet–triplet splitting of the first plateau,
into the triplet part contributing 3/4(= 0.75) and the singlet part contributing 1/4(= 0.25),
was suggested in [11] and [12, 13]. However, these theories failed to reproduce the correct
behaviour of the 0.7 anomaly with variations of temperature, concentration and source–drain
bias. Correspondingly, the model used in the present paper is also too primitive but it can be
improved, in particular, by using the results of density functional modelling [15, 16] to specify
the shape and strength of the exchange coupling J (x, y) by comparing phenomenological
parameters to experimental data. It should be also noted that in experiments the actual
position of the ‘0.7 plateau’ varies between 0.5 and 0.8 for samples having different electron
concentrations, gate voltages, and source–drain biases (see [34] and references therein) and,
accordingly, the theoretical explanations providing the ‘0.75’ result cannot be ruled out
especially in view of experimental observation of the 0.25 plateau [4].

The method of calculation of the fixed wire conductance is very similar to that of the
swept wire. However, the exchange and scattering potentials involved in equation (26) for the
swept wire and in equation (27) for the fixed wire are different, leading to the differences in
the behaviour of the conductance. One of the main differences is that the tunnelling channel,
whose width is characterized by the width of potential Vn(x), is narrow in comparison to the
extent of the bottleneck potential of a quantum wire, described by Un(x), and the corrections
associated with this tunnelling appear as a peak or a dip on top of the potential.

To evaluate equation (27), we rewrite it in the coupled representation (see appendix A,
with the prime to be omitted below) as

(E − En − Kx − Un(x)− vn(x) + jn(x, E)) ϕnα(x) = 0 (36)

for α = 1, 2, 3 and

(E − En − Kx − Un(x)− vn(x)− 3 jn(x, E)) ϕn4(x) = 0 (37)

for α = 4. The exchange-independent solutions can be found from the equation

(E − En − Kx − Un(x)− vn(x)) χ
±
nk(x) = 0, (38)

where k = 1
h̄

√
2m(E − En), and we denote the transmission coefficient associated with these

solutions as tn(E − En).
We can express the exchange term, jn(x, E), in terms of the transmission coefficients of

the swept wire. In this, we employ the approximation of inverse parabolicity of the barrier in
the swept wire to the Green functions involved in the definition of the exchange term,

jn(x) = −Vn(x) 1
4

∫
dx ′ [gt(x, x ′, E − E0)− gs(x, x ′, E − E0)

]
Vn(x

′). (39)

Using the properties of the Green functions of the inverse parabolic barrier (see appendix C),
we find that the energy dependence of the exchange term is determined by the difference of
the transmission coefficients as

jn(x, E) ∼ [T0t (E − E0)− T0s(E − E0)] jn(x). (40)

The contributions of the exchange interaction have different signs for the singlet and
triplet states and appear as a peak and a dip, respectively, on top of the bottleneck potential
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Figure 3. The potential of the fixed wire with corrections due to the exchange coupling and the
quasibound state formed in the case of the potential dip.
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Figure 4. The conductances of the swept (solid line) and fixed (dashed line) wires as functions of
the gate voltage applied to the swept wire.

Ũ(x) = U(x) + v(x) (see figure 3). The dip leads to the occurrence of localized states inside
the potential of the fixed wire, modifying its conductive properties. We consider two possible
situations.
(1) Ferromagnetic coupling ( jn(x, E) > 0).

In this case the triplet states experience a dip in the potential, and the energy of the
quasibound state (figure 4) can be found from the equation

[Kx − jn(x, E)]φnt(x) = λntφnt(x), (41)

where the energy is counted from the top of the bottleneck potential, Ũn,max, and λnt is negative.
The transmission coefficient of a barrier with the quasibound state was calculated in [32], and
is given by

Tnt(E − En) = tn(E − En) +
m

ikh̄2

〈
φnt | jn(x, E)|χ+

nk

〉 〈
φnt | jn(x, E)|χ−

nk

〉

E − En − Ũn,max − λ̄nt + i�nt

, (42)
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where λ̄nt = λnt + δλnt (with δλnt accounting for the energy shift due to the possibility of
tunnelling in and out of the quasibound state) and the width of the tunnelling resonance, �nt ,
has the form [32]

�nt = m

2kh̄2

(∣∣〈φnt | jn(x, E)|χ+
nk

〉∣∣2 +
∣∣〈φnt | jn(x, E)|χ−

nk

〉∣∣2
)
. (43)

Substituting the expressions for the exchange term, equation (40), into equation (42), we obtain

Tnt(E − En) = tn(E − En) +
Kn [T0t (E − E0)− T0s(E − E0)]2

E − En − Ũn,max − λ̄nt + i�nt (E − E0)
, (44)

where Kn is a scalar coefficient. The bottleneck potential of the fixed wire can also be
assumed to be inverse parabolic,Ũn(x) ≈ Ũn,max−m�2

nx2/2, and the background transmission
coefficient has the form

tn(E − En) = t

[
E − En − Ũn,max

h̄�n

]
. (45)

The absolute value of the transmission coefficient equation (44) should not exceed unity.
One can see that this condition is obeyed because the two terms in this expression are non-zero
for different energies.

For the singlet state there is no dip in the potential, but the barrier is a little bit higher than
Ũn,max, which can be taken into account by introducing parameter δ jn(E − E0) proportional
to [T0t (E − E0)− T0s(E − E0)] δ j̃n, so that the transmission coefficient for the singlet state
can be written as

Tns(E − En) = t

[
E − En − Ũn,max − δ jn(E − E0)

h̄�n

]
. (46)

Finally, the width of the tunnelling resonance takes the form

�nt (E − E0) = �n,0 [T0t (E − E0)− T0s(E − E0)]2 , (47)

where �n,0 is a constant.
(2) Antiferromagnetic coupling ( jn(x) < 0).

In this case the singlet state experiences scattering through a quasibonding state, whose
bare energy and zero-order wavefunction can be determined by the equation

[Kx + 3 jn(x, E)]φ′
ns(x) = λ′

nsφ
′
ns(x). (48)

Employing the same procedure as in the previous case, we obtain the transmission coefficients
as

T ′
ns(E − En) = tn(E − En) +

K ′
n [T0t(E − E0)− T0s(E − E0)]

2

E − En − Ũn,max − λ̄′
ns + i�′

ns(E − E0)
, (49)

T ′
nt(E − En) = t

[
E − En − Ũn,max − δ j ′

n(E − E0)

h̄�n

]
. (50)

In these expressions

�′
ns(E − E0) = �′

n,0 [T0t(E − E0)− T0s(E − E0)]2 . (51)

We can establish approximate relations between the coefficients in the ferromagnetic and
antiferromagnetic cases: K ′

n ≈ 9Kn , �′
n ≈ 9�n , and δ j ′

n ≈ 3δ jn.
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Figure 5. The conductance of the fixed wire as a function of the gate voltage applied to this wire
(solid line) and the deviation of this from the conductance of an uncoupled quantum wire (dashed
line, multiplied by the factor of 20).

With these transmission coefficients we can obtain an expression for the conductance as

GFW = 2e2

h

∑

n

[
3

4
|Tnt(E − En)|2 +

1

4
|Tns(E − En)|2

]
. (52)

The conductances of the swept and fixed wires are shown in figure 4 as functions of the gate
voltage of the swept wire (which determines the energy separation of the local state, E0,
and the Fermi energy) for the ferromagnetic case and for the following set of parameters:
EF − Ũmax = 0.6 meV, Ũmax − En = 0.3 meV, Jmax = 0.3 meV, ω− = 0.3 meV,
ω+ = 1.5 meV, ωU = 1 meV, �n = 1 meV, Kn = 0.0285 meV, �n = 0.1 meV, and
δ jn = 0.1 meV. The confinement potential in the fixed wire is assumed to be parabolic with
the level separation En − En−1 = 0.3 meV.

One can see from this figure that the conductance peak in the fixed wire appears at exactly
the same gate voltages as the 0.75 plateau in the conductance of the swept wire, indicating
their common nature in the local moment formation as the swept wire pinches off.

The conductance of the fixed wire as a function of its gate voltage, and its deviation from
the conductance of an uncoupled wire, are shown in figures 5, and 6 shows the deviation of
conductance from that of a single wire in greater detail. One can see that the peak height
exhibits an oscillatory dependence, with an oscillation occurring each time that a new mode
in the fixed wire becomes propagating. This behaviour is quite reasonable, since we have
reduced the detailed problem to a single-particle one [29, 32]. It should also be emphasized
that such oscillatory behaviour of the fixed-wire conductance peak has actually been observed
in experiment [36]. This observation, and our associated theoretical results of figures 5 and 6,
provide strong evidence in support of our interpretation of the conductance resonance as a
detector of LMM formation. Finally, we would like to outline a few possible improvements to
the modelling approach proposed here. The most crucial element of our model is the exchange
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Figure 6. Detailed view of the deviation of the conductance of the fixed wire from the conductance
of a single quantum wire as a function of gate voltage on the fixed wire.

coupling, J (x, y), between the LMM and the conducting electrons. While we have treated
the strength of this interaction as a fitting parameter (in the framework of the parabolic barrier
approximation used here), more rigorous results can be achieved by deducing the shape and
the strength of J (x, y) from the results of density functional simulations [15–17]. Another
improvement should be possible by choosing a model potential for the structure and solving
numerically for exact scattering coefficients. Probably, the most important feature of the model
described here is its applicability to devices with different geometries. For example, in [37]
we analysed the conductance of a structure similar to the one studied here, but containing
two LMMs coupled to the detecting wire. It was shown in this work that the conductance
response allows a determination of whether the two LMMs are in the singlet or in the triplet
configuration, respectively, thus paving the way for possible quantum computing applications
of LMMs. Finally, in view of recent developments regarding the theory of the 0.7 feature [23],
one can expect that the characteristics of the model should be substantially improved if we
replace a single spin-1/2 moment in our model by an antiferromagnetic Heisenberg spin chain.

4. Conclusions

In this report, we have presented a detailed semi-phenomenological theory for the electron
dynamics in a system of coupled quantum wires, under conditions where a local magnetic
moment is formed in one of them. Rather than assume that this local moment is related to the
formation of an associated localized state in the swept wire, we have calculated the single-
electron transmission properties of the fixed wire in a potential that is modified by the presence
of an extra scattering term, arising from the presence of the local moment in the swept wire.
To determine the transmission coefficients in this system, we derived equations describing the
dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis
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clearly shows that the observation of a resonant peak in the conductance of the fixed wire is
correlated to the appearance of additional structure (near 0.75 × 2e2/h or 0.25 × 2e2/h) in
the conductance of the swept wire, in agreement with the experimental results of [25–27]. We
also predict the oscillations of the peak height as a function of the gate voltage applied to the
fixed wire.
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Appendix A. Electron scattering by a localized spin

In this appendix we discuss the canonical transformation from the uncoupled representation
to the coupled representation.

The basis vectors in the spin space of electron spin and the magnetic moment in the
uncoupled representation are given by equations (3). The form of the exchange operator �σ · �S
in this basis is

Q̂ = �σ · �S =




1 0 0 0
0 1 0 0
0 0 −1 2
0 0 2 −1



 . (A.1)

This operator can be diagonalized by a canonical transformation

Q̂′ = X̂+ Q̂ X̂ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3



 (A.2)

where the transformation operator is given by

X̂ =




1 0 0 0
0 1 0 0
0 0 1√

2
− 1√

2

0 0 1√
2

1√
2


 . (A.3)

The wavefunction is transformed in a similar way:

ϕ̂′(x) = X̂+ϕ̂(x). (A.4)

The equation describing scattering of an electron on LMM is(
ε − Kx − U(x) + J (x)�σ · �S

)
ϕ(x) = 0, (A.5)

where ϕ(x) is a four-component wavefunction in spin space:

ϕ̂(x) =
4∑

α=1

χαϕα(x). (A.6)

This equation can be formally solved with help of the canonical transformation, equation (A.3)
( Î = X̂+ X̂):

X̂+
(
ε − Kx − U(x) + J (x)�σ · �S

)
X̂ X̂+ϕ(x) =

(
ε − Kx − U(x) + J (x)X̂+�σ · �S X̂

)
ϕ̂′(x)

=
(
ε − Kx − U(x) + J (x)Q̂′

)
ϕ̂′(x) = 0. (A.7)
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Equation (A.7) is diagonal in spin space and can be written as four equations for wavefunction
components:

(ε − Kx − U(x) + J (x)) ϕ′
α(x) = 0, α = 1, 2, 3 (A.8)

(ε − Kx − U(x)− 3J (x)) ϕ′
4(x) = 0. (A.9)

Appendix B. Green function for an electron scattered by a localized spin

In this appendix we derive the Green function of equation (20), starting from its definition,
equation (14),

Ĝ0(ε) =
[
ε − Kx − U0(x) + J (x) �̂σ · �̂S

]−1
. (B.1)

According to this, the Green function satisfies the equation
(
ε − Kx − U(x) + J (x) �̂σ · �̂S

)
Ĝ(x, x ′, ε) = Î δ(x − x ′), (B.2)

where Î is the unit matrix in spin space, together with the boundary conditions, which depend
on the particular kind of the Green function that we are looking for.

Using the canonical transformation of appendix A, we can calculate the Green
function Ĝ ′(x, x ′, ε) = X̂+Ĝ(x, x ′, ε)X̂ , which is diagonal in spin space, G ′

αβ(x, x ′, ε) =
δαβG ′

α(x, x ′, ε), and whose components, G ′
α(x, x ′, ε) = gt(x, x ′, ε) for α = 1, 2, 3, and

G ′
4(x, x ′, ε) = gs(x, x ′, ε), should satisfy the equations

(ε − Kx − U(x) + J (x)) gt(x, x ′, ε) = δ(x − x ′), (B.3)

(ε − Kx − U(x)− 3J (x)) gs(x, x ′, ε) = δ(x − x ′). (B.4)

The outgoing-wave Green function, Gαβ(x, x ′, ε) ∼ δα,βe±ikx for x −→ ±∞, is of most
interest to us. It is shown in [32] that in terms of the scattering solutions the components of
the desired Green function are given by

gt,s(x, x ′, ε) = m

ikTt,s

{
φ

t,s−
k (x ′)φt,s+

k (x) if x > x ′,
φ

t,s+
k (x ′)φt,s−

k (x) if x < x ′,
(B.5)

where k = √
2mε/h̄ and φt,s−/+

k are triplet/singlet scattering solutions originated from +/−∞,
respectively.

Now the Green function Ĝ ′(x, x ′, ε) takes the form

Ĝ ′(x, x ′, ε) =




gt(x, x ′, ε) 0 0 0
0 gt(x, x ′, ε) 0 0
0 0 gt(x, x ′, ε) 0
0 0 0 gs(x, x ′, ε)



 (B.6)

and applying the canonical transformation backwards we obtain

Ĝ(x, x ′, ε) = X̂ Ĝ ′(x, x ′, ε)X̂+

=





gt(x, x ′, ε) 0 0 0
0 gt (x, x ′, ε) 0 0
0 0 1

2

[
gt(x, x ′, ε) + gs(x, x ′, ε)

]
1
2

[
gt(x, x ′, ε)− gs(x, x ′, ε)

]

0 0 1
2

[
gt (x, x ′, ε)− gs(x, x ′, ε)

]
1
2

[
gt (x, x ′, ε) + gs(x, x ′, ε)

]



 .

(B.7)
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Finally, equation (B.7) can be split into the scalar part, proportional to a unit matrix in the

spin space, and the part proportional to the exchange operator, Q̂ = �̂σ · �̂S:

Ĝ(x, x ′, ε) = 1
4

[
3gt(x, x ′, ε) + gs(x, x ′, ε)

]
Î + 1

4

[
gt(x, x ′, ε)− gs(x, x ′, ε)

] �̂σ · �̂S. (B.8)

Appendix C. Green functions and transmission coefficients of an inverse parabolic
barrier

In this section we briefly summarize some known facts about an inverse parabolic barrier [33].
If the barrier potential is given by u(x) = −mω2x2/2, the scattering solutions of the equation

[ε − Kx − u(x)]�±(x) = 0 (C.1)

are given by

�±(x) = E(η,±ξ), (C.2)

where E(η, ξ) is a Weber function, i.e. a solution of the equation for parabolic cylinder
functions, y ′′(ξ)+( 1

4ξ
2−η)y(ξ) = 0 [35]; ξ = qx , and q = √

2mω/h̄, whereas η = −ε/(h̄ω).
The one-dimensional Green function for such a barrier is given by

G(x, x ′, ε) = mt (η)

h̄2q

{
E(η, ξ)E(η,−ξ ′), x > x ′

E(η,−ξ)E(η, ξ ′), x < x ′,
(C.3)

where the transmission coefficient has the form

t (η) = [1 + e−2πη
]−1/2

. (C.4)
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